a2 United States Patent

Riedy et al.

US009245053B2

US 9,245,053 B2
*Jan. 26,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

EFFICIENTLY SEARCHING AND
MODIFYING A VARIABLE LENGTH QUEUE

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Dale E. Riedy, Poughkeepsie, NY (US);
Donald W. Schmidt, Stone Ridge, NY
(US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 340 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/795,211

Filed: Mar. 12,2013

Prior Publication Data

US 2014/0281318 Al Sep. 18, 2014

Int. Cl1.
GO6F 12/00
GO6F 17/30
GO6F 9/46
GO6F 9/52
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)

GOGF 17/30985 (2013.01); GOGF 9/466
(2013.01); GOGF 9/52 (2013.01); GO6F
2209/548 (2013.01)

Field of Classification Search
CPC GOGF 9/30043; GOGF 3/0659; GOGF
17/30386; GOGF 9/466; GOGF 12/1425;
GOGF 17/30985
See application file for complete search history.

300

(56) References Cited

U.S. PATENT DOCUMENTS

5,555396 A * 9/1996 Alfernessetal. 711/147
6,275,823 Bl 8/2001 Ronstrom
6,868,414 B2 3/2005 Khanna et al.
7,107,367 Bl 9/2006 Hughes
8,078,820 B2 12/2011 Michaylov et al.
2007/0260777 Al* 112007 Timpeetal. 710/52
OTHER PUBLICATIONS

Giacomoni et al, “FastForward for Efficient Pipeline Parallelism: A
Cache-Optimized Concurrent Lock-Free Queue”, PPoPP’08, ACM,
pp. 43-52, 2008.

(Continued)

Primary Examiner — Reginald Bragdon

Assistant Examiner — Thanh D Vo

(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
William A. Kinnaman, Jr.

(57) ABSTRACT

A system for ensuring that serialization is maintained
between separate transactions while searching and/or modi-
fying a variable length queue is system includes a computer
processor and logic executable by the computer processor.
The logic is configured to implement a method. The method
includes searching, by a processing device, a queue using a
transaction. A first sequence number is retrieved from a queue
header and a second sequence number is retrieved from local
storage for the transaction. The first sequence number is com-
pared with the second sequence number according to embodi-
ments. The search of the queue is resumed using an address of
a next element saved from a previous transaction responsive
to the first sequence number matching the second sequence
number. The search of the queue is restarted at a first element
responsive to the first sequence number not matching the
second sequence number.

10 Claims, 3 Drawing Sheets

~

Resume Search of Queue with New
Transaction

I/ 310

Retrieve First Sequence Number
from Queue Header

I/ 320

Retrieve Second Sequence Number
from Local Storage

|/ 330

Sequence
‘Numbers
Match?

340

Resume Search at Saved Address
of Next Element in Queue

350

360

Restart Search at First Element of
Queue

US 9,245,053 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Hudson et al, “McRT-Malloc—A Scalable Transactional Memory
Allocator”, ISMM’06, Proc. of the 5th International Symposium on
Memory Management, ACM, pp. 74-83, 2006.

Greiner, “IBM zEnterprise EC12 CPU Facilities”, IBM
z/Server Architecture, Share 120, Session 12670, Feb. 5, 2013, pp.
1-62.

* cited by examiner

U.S. Patent Jan. 26, 2016 Sheet 1 of 3 US 9,245,053 B2

\\

ﬁ 4]
18|
I N
%\g %ﬂ" §
W
ng §xm * _(E
=
2 2)
A= o 2]
E 1887 = é
: STl
&

24
N
DISPLAY

U.S. Patent Jan. 26, 2016 Sheet 2 of 3 US 9,245,053 B2

200 —)
\ Search Limited Number of
Elements in Queue with a 210
Transaction E‘

220
Match

Element?

NO

YES NO

Modify
Element?

Increment First Sequence Number

in Queue Header YES

More
Elements to
Process?

=
240

\4

260
Update Second Sequence Number

in Local Storage

~ 250 Save Address of Next Element in
Queue
~
| 270

End Transaction

™~
280

FI1G. 2

U.S. Patent Jan. 26, 2016 Sheet 3 of 3 US 9,245,053 B2

300
ith
\A Resume Search of Q}leue with New I/ 310
Transaction
Retrieve First Sequence Number 30
from Queue Header
A 4
Retrieve Second Sequence Number 130
from Local Storage
340
YES Sequence
Numbers
Match?
A4 v
Resume Search at Saved Address 350 Restart Search at First Element of
of Next Element in Queue 360 A Queue

FIG. 3

US 9,245,053 B2

1
EFFICIENTLY SEARCHING AND
MODIFYING A VARIABLE LENGTH QUEUE

BACKGROUND

The present invention relates generally to the serialization
of queues in a multi-processor environment, and more spe-
cifically, to ensuring that serialization is maintained between
separate transactions while searching and/or modifying a
variable length queue.

Searching and/or modifying a queue in a multi-processor
environment generally requires a serialization mechanism to
ensure that one central processing unit (CPU) is not making
incompatible changes to the queue while another CPU is
either searching the queue or also making changes to the
queue.

One conventional serialization mechanism is ahardware or
software locking technique, which permits a single CPU to
update the queue or multiple CPUs to search the queue with-
out updating. Another conventional serial mechanism utilizes
transactional execution. A typical transactional execution
implementation allows a set of instructions that search or
modify a queue to appear as a single transaction with respect
to other CPUs. That is, all storage accesses between the start
and end of'the transaction appear to be block-concurrent with
respect to other CPUs, and all storage updates are either
committed in their entirety once the transaction ends or none
of them are committed due to a fetch or store conflict with
another CPU. If a conflict occurs between two CPUs (e.g.,
one CPU accesses a storage area that is modified by another),
the transaction is aborted for one or both CPUs. The transac-
tion can then be retried by the CPUs.

SUMMARY

According to an embodiment of the present invention, a
method for ensuring that serialization is maintained between
separate transactions while searching and/or modifying a
variable length queue is provided. The method includes
searching, by a processing device, a queue using a transac-
tion. A first sequence number is retrieved from a queue header
and a second sequence number is retrieved from local storage
for the transaction. The first sequence number is compared
with the second sequence number according to embodiments.
The search of the queue is resumed using an address of a next
element saved from a previous transaction responsive to the
first sequence number matching the second sequence number.
The search of the queue is restarted at a first element respon-
sive to the first sequence number not matching the second
sequence number.

According to an embodiment of the present invention, a
system for ensuring that serialization is maintained between
separate transactions while searching and/or modifying a
variable length queue is provided. The system includes a
computer processor and logic executable by the computer
processor. The logic is configured to implement a method.
The method includes searching, by a processing device, a
queue using a transaction. A first sequence number is
retrieved from a queue header and a second sequence number
is retrieved from local storage for the transaction. The first
sequence number is compared with the second sequence
number according to embodiments. The search of the queue is
resumed using an address of a next element saved from a
previous transaction responsive to the first sequence number
matching the second sequence number. The search of the
queue is restarted at a first element responsive to the first
sequence number not matching the second sequence number.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to a further embodiment of the present inven-
tion, a computer program product for ensuring that serializa-
tion is maintained between separate transactions while
searching and/or modifying a variable length queue is pro-
vided. The computer program product includes a storage
medium having computer-readable program code embodied
thereon, which when executed by a computer processor,
causes the computer processor to implement a method. The
method includes searching, by a processing device, a queue
using a transaction. A first sequence number is retrieved from
a queue header and a second sequence number is retrieved
from local storage for the transaction. The first sequence
number is compared with the second sequence number
according to embodiments. The search of the queue is
resumed using an address of a next element saved from a
previous transaction responsive to the first sequence number
matching the second sequence number. The search of the
queue is restarted at a first element responsive to the first
sequence number not matching the second sequence number.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a block diagram of a computer system
according to an embodiment;

FIG. 2 depicts a flow diagram of a process for searching
and modifying a variable length queue with a transaction
according to an embodiment; and

FIG. 3 depicts a flow diagram a process for resuming the
searching and modifying of a variable length queue with a
new transaction according to an embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein are directed to a method
providing transactional execution to search and/or modify a
variable length queue such that the number of elements
searched does not cause the maximum number of storage
references to be exceeded and the transaction to be aborted,
and ensures serialization is maintained between separate
transactions. Embodiments disclosed herein may provide a
hardware or software lock as a backup if the transaction
aborts and cannot be retried and ensures that all transactions
are aborted if another CPU obtains a lock for serialization.

Searching and modifying a queue in a multi-processor
environment generally requires a serialization mechanism to
ensure that one central processing unit (CPU) is not making
incompatible changes to the queue while another CPU is
either searching the queue or also making changes to the
queue. In typical multi-processing environments, serializa-
tion may be accomplished by a hardware or software locking
technique, which permits a single CPU to update the queue or
multiple CPUs to search the queue without updating. This
technique typically serializes a much broader resource that
what is necessary. For example, if a queue consists of 1000

US 9,245,053 B2

3

elements, and one CPU needs to add an element between the
999th and 1000th elements, and a second CPU needs to
search the queue for a matching element that appears before
the 999th element, then the second CPU must still wait even
though it is not affected by the changes made by the first CPU.
Finer grained serialization such as using multiple locks may
be used, however, multiple locks may have hierarchy or dead-
lock issues and may not lend itself easily to the way the queue
is being accessed.

Transactional execution allows the set of instructions that
search or modify a queue to appear as a single transaction
with respect to other CPUs. That is, all storage accesses
between the start and end of the transaction appear to be
block-concurrent with respect to other CPUs, and all storage
updates are either committed in their entirety once the trans-
action ends, or none of them are committed due to fetch or
store conflict with another CPU. If a conflict occurs between
two CPUs (e.g., one CPU accesses a storage area that is
modified by another), the transaction is aborted for one or
both CPUs. The transaction may then be retried by the CPUs.
However, even with transactional execution, there are limita-
tions on the number of unique storage references and updates
(e.g., cache lines) that can occur within a transaction, and
limitations on the type or number of instructions that may be
executed. For example, a program may need to find and
remove two elements from the queue. After each element is
removed, some additional processing needs to be performed,
such as freeing the element or giving control to another rou-
tine. If this additional processing cannot be done under a
transaction, then the program has no choice but to end the
transaction after finding the first element and then start a new
transaction for the second element. Since there is no serial-
ization between the transactions, the program has no choice
but to search the queue starting with the first element. If the
queue is very long, this can be very time consuming, espe-
cially if storage areas for the elements are no longer in the
CPU cache and have to be fetched from memory. Addition-
ally, if there are limitations on the number of unique storage
references in a transaction, the program cannot simply search
through the entire queue until it finds the matching element
because the transaction would abort long before the element
is found.

Embodiments disclosed herein provide a method, system,
and computer program product for maintaining serialization
between separate transactions. A new transaction may resume
a search of a queue according to embodiments. The new
transaction retrieves a first sequence number from a queue
header a second sequence number for the transaction from
local storage. The first sequence number is compared with the
second sequence number according to embodiments.
Responsive to the first sequence number matching the second
sequence number, the search ofthe queue is resumed using an
address of a next element saved from a previous transaction.
However, responsive to the first sequence number not match-
ing the second sequence number, a search of the queue is
restarted at a first element of the queue.

Referring now to FIG. 1, a block diagram of a computer
system 10 suitable for searching and modifying a variable
length queue without locks according to exemplary embodi-
ments is shown. Computer system 10 is only one example of
a computer system and is not intended to suggest any limita-
tion as to the scope of use or functionality of embodiments
described herein. Regardless, computer system 10 is capable
of'being implemented and/or performing any of the function-
ality set forth hereinabove.

Computer system 10 is operational with numerous other
general purpose or special purpose computing system envi-

10

15

20

25

30

35

40

45

50

55

60

65

4

ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system 10 include, but
are not limited to, personal computer systems, server com-
puter systems, thin clients, thick clients, cellular telephones,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud comput-
ing environments that include any of the above systems or
devices, and the like.

Computer system 10 may be described in the general con-
text of computer system-executable instructions, such as pro-
gram modules, being executed by the computer system 10.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system 10 may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed computing environment,
program modules may be located in both local and remote
computer system storage media including memory storage
devices.

As shown in FIG. 1, computer system 10 is shown in the
form of a general-purpose computing device, also referred to
as a processing device. The components of computer system
may include, but are not limited to, one or more processors or
processing units 16, a system memory 28, and a bus 18 that
couples various system components including system
memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system 10 may include a variety of computer
system readable media. Such media may be any available
media that is accessible by computer system/server 10, and it
includes both volatile and non-volatile media, removable and
non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
tem 10 may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way
of'example only, storage system 34 can be provided for read-
ing from and writing to a non-removable, non-volatile mag-
netic media (not shown and typically called a “hard drive”).
Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g.,
a “floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
CD-ROM, DVD-ROM or other optical media can be pro-
vided. In such instances, each can be connected to bus 18 by
one or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the disclosure.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more

US 9,245,053 B2

5

application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system 10 may also communicate with one or
more external devices 14 such as a keyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 10; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 10 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (1/0) interfaces 22. Still yet, computer system
10 can communicate with one or more networks such as a
local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system 10 via
bus 18. It should be understood that although not shown, other
hardware and/or software components could be used in con-
junction with computer system 10. Examples include, but are
not limited to: microcode, device drivers, redundant process-
ing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

With reference to FIG. 2, a process 200 for searching and
modifying a variable length queue with a transaction accord-
ing to an embodiment is generally shown. According to an
embodiment the process 200 may be implemented with a
processing unit 16 of computer system 10 shown in FIG. 1.

According to an embodiment, a queue header control block
of'an embodiment has a pointer to a first element of the queue.
The queue header control block may be stored in system
memory according to an embodiment. The queue header con-
trol block may be at a fixed location in memory or may be
found by traversing a set of control blocks according to an
embodiment. The queue header control block contains the
first sequence number, which is incremented any time an
element in the queue is added, deleted or modified. The first
sequence number is updated under a serialization of the trans-
action or as a backup, a lock.

Before starting the first transaction to search the queue, a
second sequence number variable in a local storage of the
processing unit 16 is set to zero. Because the second sequence
number is zero, the current sequence number from the queue
header is obtained and the search of the queue begins with the
first element in the queue, as shown in block 210. According
to an embodiment, by referencing the first sequence number
in the queue header within the transaction, the current pro-
cessing unit 16 is registering interest in the storage area used
for the first sequence number. Therefore, if another process-
ing unit successfully adds, removes, or modifies an element
from the queue, it will increment the sequence number and
cause the current processing unit’s transaction to abort.

As shown in block 210, a limited number of elements on
the queue are searched for a matching element to add,
remove, or modify according to an embodiment. According to
another embodiment, the queue may be searched to copy an
element or simply to checking whether a matching element
exists. The number of storage areas that can be referenced
within the transaction is limited, so a fixed number of ele-
ments will be searched before the transaction is ended (e.g.,
100 elements). At block 220, the process 200 determines
whether a matching element has been found during the trans-
action.

10

15

20

25

30

35

40

45

55

60

65

6

Responsive to finding a matching element at block 220, the
process 200 determines whether the matching element on the
queue has been added, removed, or modified, as shown in
block 230. If the matching element on the queue was added,
removed, or modified, the first sequence number in the queue
header is incremented, as shown in block 240. According to
an embodiment, the modified first sequence number in the
queue header is also copied as the second sequence number
variable in the local storage of the current processing unit, as
shown in block 250. Therefore, the second sequence number
in local storage will be updated when the transaction ends as
discussed further below.

At block 260, a determination is made as to whether the
transaction has more elements to be processed. Responsive to
the transaction having more elements to process, the transac-
tion may continue to find additional elements to examine,
modify, or delete in the same transaction, as shown in block
210. This is possible as long as the maximum number of
storage references for the transaction is not exceeded and the
transaction does not use instructions not supported under
transactional execution. In other words, the transaction may
continue searching the queue for additional elements if the
limited number of elements referenced in block 210 has not
been exceeded. However, responsive to the transaction
exceeding the limited number of elements referenced in block
210 to process, the address of the next element is saved in
local storage according to an embodiment, as shown in block
270. At block 280, the transaction is ended, which commits all
storage updates including any changes to the queue header,
the local storage sequence numbers, and the local address of
the next element according to an embodiment.

Responsive to not finding a matching element within the
limited number of elements at block 220, the address of the
next element is saved in local storage according to an embodi-
ment, as shown in block 270. Accordingly, the transaction is
ended, which commits all storage updates including any
changes to the queue header, the local storage sequence num-
bers, and the local address of the next element according to an
embodiment, as shown in block 280.

Responsive to not modifying the matching element at
block 230, a determination is made at block 260 as to whether
there are more elements to process in the transaction. If the
limited number of elements referenced in block 210 has not
been exceeded, the transaction will continue to find additional
elements to examine, modify, or delete in the same transac-
tion, as shown in block 210. However, responsive to a deter-
mination that the limited number of elements referenced in
block 210 has been exceeded at block 260, the address of the
next element is saved in local storage according to an embodi-
ment, as shown in block 270. Accordingly, the transaction is
ended, which commits all storage updates including any
changes to the queue header, the local storage sequence num-
bers, and the local address of the next element according to an
embodiment, as shown in block 280.

With reference to FIG. 3, a process 300 for resuming the
searching and modifying of a variable length queue with a
new transaction according to an embodiment is generally
shown. According to an embodiment the process 300 may be
implemented with a processing unit 16 of computer system
10 shown in FIG. 1.

At block 310, a search for a matching element within a
queue is resumed using a new transaction. The first sequence
number is retrieved from the queue header, as shown in block
320, and the second sequence number is retrieved from local
storage, as shown in block 330. According to an embodiment,
the second sequence number in local storage is compared
against the first sequence number in the queue header to

US 9,245,053 B2

7

determine whether they match, as shown in block 340. If the
sequence numbers match, then an embodiment will resume
searching the queue with the address of the next element
saved during the previous transaction, as shown in block 350.
If another processing unit has modified the queue while the
current processing unit 16 was outside of the transaction, the
sequence number will be different, and an embodiment will
resume the search starting with the first element, as shown in
block 360.

According to an embodiment, if any other processing unit
modifies the queue during the current transaction, then the
current transaction will abort for the processing unit 16. If a
transaction of an embodiment aborts and is retryable, the
maximum number of elements that may be searched at a time
may be reduced down to a lower limit and the transaction may
be retried a limited number of times according to an embodi-
ment. For example, a transaction of an embodiment may start
by searching 100 elements and be reduced by 10 each time the
transaction aborts down to a lower limit of 50. Reducing the
number of elements searched may increase the likelihood of
the transaction completing successfully since it will reduce
the interference by other processing units if there are fetch or
store conflicts.

Reducing the number of elements searched by a single
transaction may also be beneficial when the transaction aborts
due to a fetch or store overflow condition, meaning the maxi-
mum number of storage references or updates has been
exceeded. This condition may be unpredictable in nature and
is dependent on the particular processing unit hardware
implementation. For example, suppose a processing unit sup-
ports up to 200 cache line references in a transaction, but in
certain cases the transaction may abort with an overflow
condition when only 100 cache lines are referenced. This may
occur when a processing unit assigns cache lines to a congru-
ence class (e.g., a hash bucket) for quick look up. Therefore,
multiple cache lines may map to the same congruence class.
Each congruence class may hold a maximum number of
cache lines. If a new cache line needs to be fetched, and the
congruence class is full, normally an old cache line is cast out
to make room. However, for a transactional execution, since
all cache lines need to be tracked in order to complete the
transaction, a cast out will cause the transaction to abort.
Therefore, the number of elements that may be traversed
before the transaction abort is variable and unpredictable
according to an embodiment.

According to an embodiment, when beginning a new
queue search, the maximum number of elements searched by
a transaction may be a fixed number or an adjusted number
based on prior transaction attempts. For example, if the last
time the queue was searched, the transaction aborted until the
number of elements was reduced to 70, then subsequent
searches can traverse 70 elements to avoid aborting the new
transaction. This number can be increased after a period of
time or after significant number of elements have been added
or removed from the queue according to an embodiment.

According to an embodiment, if the transaction is aborted,
a limited number of designated retries may be performed.
When the number of retries is exhausted or the transaction is
aborted and not retryable, a lock may be obtained to serialize
the queue according to an embodiment. To ensure that all
transactions accessing the queue are aborted when the lock is
obtained, at the start of each transaction, the contents of the
lock word are checked to see if another processing unit has
obtained the lock for serialization. If so, a flag is set in local
storage to indicate that the lock should be used for serializa-
tion, the transaction is ended and the search is retried after
obtaining the lock according to an embodiment. If the lock is

25

40

45

55

8

not held, the transaction continues according to an embodi-
ment. However, by checking the contents of the lock word
inside of the transaction, the current processing unit 16 is
registering interest in the storage area used for the lock word.
Therefore, if another processing unit obtains the lock after the
current transaction has checked the lock word, the current
transaction will be aborted according to an embodiment.

Technical effects and benefits of embodiments disclosed
herein include providing a transactional execution to search
and/or modify a variable length queue such that the number of
elements searched does not cause the number of storage ref-
erences to be exceeded and the transaction to be aborted, and
ensuring that serialization is maintained between separate
transactions. Embodiments disclosed herein may provide a
hardware or software lock as a backup if the transaction
aborts and cannot be retried and ensures that all transactions
are aborted if another CPU obtains a lock for serialization.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiments were chosen and
described in order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

Further, as will be appreciated by one skilled in the art,
aspects of the present disclosure may be embodied as a sys-
tem, method, or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
present disclosure may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,

US 9,245,053 B2

9

a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-

10

15

20

25

30

35

40

45

50

55

60

65

10

ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

What is claimed is:

1. A computer system configured to maintain serialization
between separate transactions, comprising:

a memory having computer readable computer instruc-

tions; and
a processing device for executing the computer readable
instructions to perform a method comprising:

searching a queue using a transaction;

retrieving a first sequence number from a queue header;

retrieving a second sequence number for the transaction;

comparing the first sequence number with the second
sequence number;

resuming a search of the queue using an address of a next

element saved from a previous transaction responsive to
the first sequence number matching the second sequence
number; and

starting a search of the queue at a first element responsive

to the first sequence number not matching the second
sequence number,
wherein the transaction is aborted due to a selected one of
a group comprising a defined maximum number of ele-
ments searchable by the transaction is reached, the first
sequence number is incremented by another processing
device, a lock is acquired by another processing device,
and a fetch and store overflow condition occurs,

wherein the defined maximum number of elements search-
able by the transaction is lowered each time the transac-
tion restarts due to an abort.

2. The computer system of claim 1, wherein responsive to
the transaction adding, removing, or modifying an element in
the queue, the system is further configured to:

incrementing the first sequence number;

updating the second sequence number to match the incre-

mented first sequence number; and

saving an address of the next element in the queue.

3. The computer system of claim 1, wherein responsive to
the transaction being a first transaction of a queue search, the
method further comprises setting the second sequence num-
ber to zero before starting the first transaction of the queue
search.

US 9,245,053 B2

11

4. The computer system of claim 1, wherein the defined
maximum number of queue elements searchable by the trans-
action is a fixed number or an adjusted number based on prior
transaction attempts.

5. The computer system of claim 1, wherein the lock is
obtained to serialize the queue in response to reaching a
maximum number of transaction restarts.

6. A computer system configured to maintain serialization
between separate transactions, comprising:

a memory having computer readable computer instruc-

tions; and
a processing device for executing the computer readable
instructions to perform a method comprising:

searching a queue using a transaction;

retrieving a first sequence number from a queue header;

retrieving a second sequence number for the transaction;

comparing the first sequence number with the second
sequence number;

resuming a search of the queue using an address of a next

element saved from a previous transaction responsive to
the first sequence number matching the second sequence
number; and

starting a search of the queue at a first element responsive

to the first sequence number not matching the second
sequence number,

wherein the transaction is aborted due to a selected one of

a group comprising a defined maximum number of ele-

5

10

15

25

12

ments searchable by the transaction is reached, the first
sequence number is incremented by another processing
device, a lock is acquired by another processing device,
and a fetch and store overflow condition occurs,

wherein the lock is obtained to serialize the queue in
response to reaching a maximum number of transaction
restarts.

7. The computer system of claim 6, wherein responsive to
the transaction adding, removing, or modifying an element in
the queue, the system is further configured to:

incrementing the first sequence number;

updating the second sequence number to match the incre-

mented first sequence number; and

saving an address of the next element in the queue.

8. The computer system of claim 6, wherein responsive to
the transaction being a first transaction of a queue search, the
method further comprises setting the second sequence num-
ber to zero before starting the first transaction of the queue
search.

9. The computer system of claim 6, wherein the defined
maximum number of elements searchable by the transaction
is lowered each time the transaction restarts due to an abort.

10. The computer system of claim 6, wherein the defined
maximum number of queue elements searchable by the trans-
action is a fixed number or an adjusted number based on prior
transaction attempts.

